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ABSTRACT

ackground: Molar pregnancy is a rare condition
carrying a 15-22% risk of progression to gestational
trophoblastic neoplasia (GTN). Although serial B-
hCG monitoring is standard, its ability to predict
early malignant change early remains uncertain.

This study examined whether flexible B-hCG decay metrics
could improve early GTN prediction compared with
conventional thresholds, and whether machine-learning
classifiers provide meaningful gains beyond interpretable
statistical models.

Methods: This retrospective cohort analyzed 413 post-molar
patients with longitudinal B-hCG data. Seven decay metrics
were derived from early follow-up measurements and evaluated
using logistic and gradient boosting machine (GBM) models.
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Model performance was assessed through cross-validated
discrimination (area under the curve (AUC)), calibration, and
decision-curve analysis (DCA).

Results: The GBM model achieved higher apparent
discrimination (AUC: 0.96) but negligible net clinical benefit
(NCB) across thresholds, indicating probable overfitting and
limited bedside utility. A parsimonious logistic model (AUC:
0.77; calibration slope: 0.85) showed stable calibration and
consistent net benefit for identifying low-risk patients. Among
the decay metrics, time-to-75% B-hCG decline (~25 days)
emerged as the most robust and interpretable predictor
(sensitivity 92%, negative predictive value 88%), offering a
simple signal of malignant persistence.

Conclusion: Early B-hCG decay dynamics, particularly time-to-
75% decline, can guide risk-adaptive follow-up after molar
evacuation. Complex machine-learning models contributed little
beyond traditional approaches in this moderate-sized cohort.
These findings support prospective validation and exploration of
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cost-effective surveillance models tailored to resource-limited
settings.

INTRODUCTION

Gestational trophoblastic diseases (GTD) progress to GTN in
roughly 14.9-21.5% of cases, yet early progression is often
clinically silent (Shana Rahman and Sudhamani 2023; Riahi et
al. 2020). Routine surveillance relies on serial B-hCG
monitoring, but static thresholds and fixed cut-offs often fail to
capture the heterogeneous regression patterns seen after molar
evacuation (Galingan and Cagayan 2021; Bakhtiyari et al. 2015;
Seckl et al. 2010). Timely identification of patients who require
intensified surveillance or intervention, therefore, remains a key
clinical challenge.

Multiple analytic strategies have been proposed to capture the
dynamics of B-hCG regression given its potential as a basis for
carly risk stratification. Slope-based decay metrics using weekly
B-hCG assessments can identify GTN up to two weeks earlier
than conventional criteria (Zhao et al. 2017), while early ratio-
based markers at fixed intervals (e.g., one- or two-week
percentage declines) reach accuracies approaching 90% in some
studies (Galingan and Cagayan 2021). More advanced
approaches, like joint models and latent class trajectory
analyses, showed strong associations between non-linear f-hCG
trends and post-molar GTN risk, with hazards increasing
roughly three-fold per log-unit rise (Riahi et al. 2020).

Despite these advances, translation into clinical practice remains
limited. The siloed application of predictive measures like
regression slopes (Bakhtiyari et al. 2015) or class-based models
(Burny et al. 2016) hinders synthesis into a broader decision
framework. Previously proposed cut-offs (e.g., 508 mIU/mL at
3 weeks, 185 mIU/mL at 5 weeks) lack generalizability across
populations (Sy and Cagayan 2023), while probabilistic models
balancing accuracy with interpretability remain rarely used. This
challenge is compounded in rare diseases like GTD in resource-
limited settings, where small sample sizes, incomplete
surveillance, and high-dimensional data create additional
constraints.

This study evaluates a set of early, flexible B-hCG decay metrics
within interpretable and adaptable predictive frameworks (i.e.,
logistic regression, machine learning or ML) to determine
whether these measures yield complementary, clinically
actionable prognostic information before GTN becomes
apparent. The researchers hypothesize that these decay metrics
can provide additional, usable prognostic signals beyond
conventional thresholds when incorporated into parsimonious,
well-calibrated models, thereby enhancing early, risk-adapted
follow-up care without presupposing categorical superiority
over existing rules.

Table 1: Summary of Flexible B-hCG Decay Metrics for Early GTN Prediction

MATERIALS AND METHODS

Study Design

A retrospective cohort study was conducted using pooled data
from the Philippine Society for the Study of Trophoblastic
Diseases, Inc. (PSSTD). Formal sample size and power
calculations indicated that approximately 1,049 women would
ideally be required to detect a small effect size (OR ~1.75) at
95% confidence and 80% power, assuming a 10-15%
prevalence of malignant transformation or chemoresistance
(Finch et al 2023; Altieri et al. 2003). However, given the rarity
of GTD and registry constraints, all available observations were
included, yielding a final analytic cohort of 413 patients who
underwent molar evacuation and serial f-hCG monitoring until
remission or progression to GTN. This dataset combined an
earlier cohort of 258 women with both partial (PHM) and
complete (CHM) moles and a later cohort of 155 women with
CHM only.

The achievable sample (compared to the target) limits statistical
power for detecting small effects and constrains model
complexity. A parsimonious model specification was prioritized
to mitigate potential overfitting and instability, with results
validated through nested cross-validation and bootstrap
resampling. Findings are to be interpreted as exploratory and
hypothesis-generating pending prospective validation.

Variables and Metrics

The dataset was anonymized and de-identified, with ethical
approval obtained from the University of the Philippines Manila
Research Ethics Board (UPMREB 2024-0368-01) prior to data
processing. A complete-case analysis was used, as B-hCG
metrics require at least two valid follow-up values per patient,
thus making single-value imputation mathematically
inconsistent. Furthermore, missingness was concentrated in
early follow-up points and largely due to loss to follow-up rather
than data omission.

The primary outcome was progression to GTN, defined using
the International Federation of Gynecology and Obstetrics
(FIGO) criteria. GTD patients were monitored serially from
molar evacuation until biochemical remission or progression to
GTN.

The registry originally contained clinico-demographic variables
such as maternal age, gravidity, parity, mode of evacuation,
histologic type, and chemoprophylaxis status, along with all
available B-hCG values during follow-up. Seven flexible decay
metrics were derived from the initial post-evacuation B-hCG
values to quantify early hormone decline. These were selected
for their clinical interpretability, simplicity, and feasibility in
low-resource settings. The operational definitions, derivation
formulae, and clinical interpretations are summarized in Table 1.
These derived variables were computed post hoc from serial -
hCG data and were not part of the original registry dataset.
Segmental slopes refer to piecewise log-linear slopes computed
within defined early follow-up windows using simple
regressions, while the parametric slope corresponds to the fixed-
effect coefficient from a mixed-effects model, representing the
average early decline rate per patient.

Metric Formula

Interpretation

Percent Drop [(Bo - B7) / Bo] x 100

Log p-hCG Ratio
evacuation f-hCG)

Log Decline Rate [log(Bo) - log(B7)] / (t7 - to)

Approximates proportional decline, between pre-
evacuation and seventh follow-up f-hCG

Log (Pre-evacuation B-hCG / First post- Reflects early treatment response, a ratio >2 to 5

suggests sharp drop (protective)
Models log-linear decay rate, flatter slopes imply slower
decline
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Time to Threshold

Earliest day B-hCG < 100/10/5

Time to reach clinical reference B-hCG levels (<100,
<10, and <5 mIU/mL)

Early Doubling B7>2 % Bo Binary indicator of rapid rise, potentially suggestive of
GTN
Parametric Slope Estimated from first 2-5 points or model- Continuous rate of decline from mixed-effects or linear
based regression
Segmental Slopes Slopes T1 (first 2 visits), T2 (visits 3-4), T3 ~ Captures phase-specific decay patterns in early GTD
(5™ visit) from linear fits over follow-up bins _ surveillance
Statistical Analysis criteria (BIC), sample size reduction, and variance inflation

Bivariate comparisons between GTN and non-GTN cases used
¥*> and Wilcoxon rank-sum tests. Logistic regression,
summarized using odds ratios (OR), was performed
hierarchically: starting with a core model of decay metrics,
extending to additional predictors, and subsequently adding
interaction terms. Interaction terms (i.e., slope x baseline -
hCG) were explored because the prognostic meaning of an early
decline rate may depend on initial tumor burden. A slow slope
from a very high baseline can imply different risk than the same
slope from a low baseline. Clinically important covariates were
incorporated into the best-fitting model and used for an adjusted
model.

A gradient boosting model (GBM) was chosen as the ML
comparator because it accommodates non-linear relationships
and variable interactions efficiently without the high
computational demand or sample size required by neural
networks or other ML frameworks (Li et al. 2022). Alternative
algorithms (random forests, support vector machines, neural
networks) were initially explored in pilot runs but offered no
clear performance advantage and required larger samples to tune
reliably. GBM therefore provided a pragmatic balance between
flexibility, interpretability, and computational feasibility for this
modest-sized dataset.

The GBM model was trained on the same set of predictors
following a 70/30 train-test split, with feature importance
summarized by gain, cover, and frequency. Hyperparameters
followed default boosting settings (i.e., learning rate: 0.1,
maximum tree depth: 6, boosting rounds: 100) with internal five-
fold cross-validation to minimize overfitting. No further
optimization was done to avoid inflating model performance
given the limited event count. As such, its results reflect baseline
GBM behavior rather than tuned performance.

Model discrimination was assessed using the area under the
receiver operating characteristic (ROC) curve (AUC, 95%
confidence intervals (CI), DeLong method). Optimal binary
cutoffs were determined via Youden’s index, and diagnostic
accuracy was summarized as sensitivity, specificity, predictive
values (PV), and correct classification proportion (CCP). Model
fit was compared using Akaike (AIC) and Bayesian information

Table 2: Baseline Characteristics of Study Participants

factors (VIF) for multicollinearity.

Net clinical benefit (NCB) was evaluated with decision curve
analysis (DCA) across thresholds of 10%, 20%, and 30%,
representing clinically plausible intervention points (Vickers
and Elkin 2006). Five-fold cross-validation was used to compute
standardized net clinical benefit (sNCB) with confidence
intervals. Calibration was assessed with 200 bootstrapped
resamples, reporting slope, intercept, and mean absolute error
(MAE), and generating bias-corrected calibration plots.

The robustness of early B-hCG decay metrics was examined via
a series of sensitivity and subgroup analyses. Stratified analyses
across relevant subgroups (i.e., histological type, mode of
evacuation, chemoprophylaxis status) were summarized using
relative risks (RR) estimated from Poisson regression with
robust errors. Similarly, subgroup-specific AUCs were
computed from logistic regression models, while cross-
validation procedures were repeated for both logistic and GBM
models to evaluate generalizability.

All analyses were performed in R version 4.5.0 (R Core Team
2025) using the following packages: broom (Robinson et al.
2024), caret (Kuhn 2008), ggplot2 (Wickham 2016), lme4
(Bates et al. 2015), Imtest (Zeileis and Hothorn 2002), pROC
(Robin et al. 2011), purrr (Wickham and Henry 2025),
randomForest (Liaw and Wiener 2002), rmda (Brown 2018),
sandwich (Zeileis et al. 2024), xgboost (Chen and Guestrin
2016), and zoo (Zeileis and Grothendieck 2005).

RESULTS

Sample Characteristics

Table 2 compares the outcome groups for context and was meant
to summarize distributions prior to multivariable modeling. Of
the total, the majority of the women experienced spontaneous
remission, while a small yet significant proportion (18.6%, 95%
CI: 15 to 22.74%) experienced GTN.

Characteristics e A i )4
(n=413) (n=336) n=77)
Maternal Age
<40 years 334 (80.87%) 271 (80.65%) 63 (81.82%) 082
>40 years 79 (19.13%) 65 (19.35%) 14 (18.18%) ’
Gravidity
Gl 115 (27.85%) 93 (27.68%) 22 (28.57%)
G2-G3 148 (35.84%) 113 (33.63%) 35 (45.45%) 0.07
G4 and above 150 (36.32%) 130 (38.69%) 20 (25.97%)
Parity
Nulliparous 125 (30.27%) 101 (30.06%) 24 (31.17%) 085
Parous 288 (69.73%) 235 (69.94%) 53 (68.83%) ’
Pre-evacuation p-hCG
Median 197,369 192,585 222815 016
Interquartile range 10,000, 413,216 10,000, 407,949 14,911, 594,406 ’
Post-evacuation p-hCG
s 955.11 5,046 .
1% Follow-up 1,250 (300, 4,520) (164.95, 3,062.50) (1,371, 18.400) 0.01
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Characteristics e A i )4
(n=413) (n=336) mn=77)
274 Follow-up 80.45 1,883.75 .
131(23.07, 508.24) (14.68, 235.18) (518.39,9,028.59) 001
3 Follow-up 14.30 1,779 -
23.10 (4.10, 134.60) (3.30, 44.75) (525, 3.914.26) 0.01
Histological Type
PHM 43 (10.41%) 37 (11.01%) 6 (7.79%) 040
CHM 370 (89.59%) 299 (88.99%) 71 (92.21%) ’
Mode of Evacuation
Suction curettage 323 (78.21%) 253 (75.30%) 70 (90.91%) 001"
Surgical evacuation 90 (21.79%) 83 (24.70%) 7 (9.09%) ’
Chemoprophylaxis
Not given 87 (21.07%) 59 (17.56%) 28 (36.36%) 001"
Given 326 (78.93%) 277 (82.44%) 49 (63.64%) ’
Follow-up (in weeks) 33(19,39) 34 (29, 44) 9(7,12) 0.01*
*p<0.05, *p<0.01
Maternal age and parity were comparable across groups, with Non-GTN GTN
most women being multigravida. However, the GTN group had
relatively more women with two to three pregnancies and fewer
patients with at least four pregnancies. Pre-evacuation B-hCG 1000.000
levels were predominantly high without significant differences
between outcomes. Histology was overwhelmingly CHM with e
both groups, and slightly more common in GTN, though not ) 10000
statistically significant. g ‘
GTN was more frequent among women who underwent suction g

curettage and who did not receive chemoprophylaxis. Median
follow-up was substantially longer in remission than in GTN,
indicating earlier recognition and treatment initiation in the latter.

Furthermore, median B-hCG values fell sharply over the first
three visits, but GTN cases showed markedly slower declines
(p<0.01 at each follow-up). Figure 1 illustrates these divergent
trajectories, with non-GTN cases exhibiting rapid decreases, and
GTN cases showing slower, irregular declines or early plateaus.
Longitudinal distributions across 22 visits (Supp Table 1)
demonstrated convergence toward very low values (<2
mlIU/mL) after week 6, but wide early interquartile ranges
highlighted heterogeneous decline rates. These findings
underscore the prognostic relevance of early follow-up and
justify modeling focused on initial decay patterns rather than
absolute thresholds.

Table 3: Summary of Flexible B-hCG Decay Metrics across GTN Status

100

0 60 120 180 240 300 360 420 O 60 120 180 240 300 360 420
Days from Evacuation

Figure 1: Individual B-hCG Trajectories over Time

Predictive Utility of Flexible B-hCG Decay Metrics
Univariable analyses first evaluated each decay metric
individually before proceeding to multivariable modeling.
Flexible decay metrics (Table 3) revealed marked differences
between outcomes. GTN cases had apparent mean percent
increase in B-hCG (—164.81% vs. 99.35%, p<0.01), where
negative values indicate increases due to drop metric convention,
more frequent early doubling (11.7% vs. 1.8%, p<0.01), and
shallower or reversed slopes across early phases (T1-T3).
Although overall parametric slopes and drop times were not
significantly different, segmental analyses showed that GTN
cases declined more slowly, plateaued earlier, and occasionally
re-elevated, highlighting the diagnostic utility of granular slope
metrics.

Metrics Total Non-GTN GTN 7
(n=413) (n=336) n=77)

Percent drop 50.1 £645.5 99.4+10.4 -164.8 + 1483.4 0.01™
Log B-hCG Ratio -0.06 +£0.04 -0.06 +0.03 -0.05+0.05 0.07
Drop rate

Time-to-50% 23.9+38.6 25.6 +£41.7 15.7+13.7 0.40

Time-to-75% 26.6 £41.2 28.5+44.3 16.5+14.8 0.14

Time-t0-90% 289+41.5 31.1+443 159+12.9 0.03"
Log decline rate -0.06 +£0.04 -0.06+0.03 -0.05+0.05 0.07
Time-to-threshold

Time to 100 mIU/mL 50.4+41.7 50+42.2 58.4+33.2 0.01*

Time to 10 mIU/mL 73.8 +£46.7 73.9+473 70+11.1 0.01™

Time to 5 mIU/mL 82.6 £ 50.6 82.8+£51.1 72.6 +13.5 0.01*
Early doubling 15 (3.63%) 6 (1.79%) 9 (11.69%) 0.01*
Parametric slope -0.36 £0.12 -0.36 £ 0.12 -0.36 +0.11 0.55
Segmental slopes

T1 (<2 follow-ups) -0.22+0.14 -0.23+0.14 -0.15+0.13 0.01*

T2 (<4 follow-ups) -0.07£0.10 -0.07 £0.09 -0.01 £ 0.09 0.01*
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Metrics Total Non-GTN GTN
(n=413) (n = 336) (n=77) p
T3 (5th follow-up) -0.01 £0.05 20.02 = 0.03 0.01£0.16 0.017"

*p<0.05, **p<0.01

Crude logistic models (Supp Table 2) identified percent drop
from baseline as the strongest discriminator (OR: 0.94 per 1%
increase; AUC: 0.94). Early B-hCG doubling strongly increased
GTN risk (OR: 7.28, p<0.01), and segmental slopes were
predictive of malignant progression. Extremely high or unstable
odds for some metrics (e.g., log decline rate, T2 slope) reflected
separation artifacts.

By contrast, time-to-threshold metrics and parametric slopes did
not show a clear association in this sample, consistent with their
computational structure.

Multivariable Models
In this section, all subsequent estimates refer to multivariable
models adjusting for the variables specified in each model.

Core Model

The first multivariable model, which contained percent drop, log
B-hCG ratio, and time-to-75%, produced stable and interpretable
estimates (Table 4). All three predictors were statistically
significant, and aligned with biological plausibility, such that a
greater percent drop and higher log ratio of follow-up to baseline
B-hCG were protective, while a slower decline to 75% of pre-
evacuation levels was associated with higher odds of GTN
adjusting for these decay metrics.

Table 4: Core Model

Predictors OR 95% CI P
Percent drop 0.95 0.91-0.98 0.01™
Log B-hCG Ratio 0.86 0.74-0.98 0.03"
Time-t0-75% 0.98 0.96 — 0.99 0.03"

*p<0.05, **p<0.01

Extended and Interaction Models

Adding segmental slopes in the extended model (Supp Table 3)
modestly improved apparent performance, but attenuated effects
of other metrics. After adjustment for clinical covariates, only
the segmental slope during the fifth follow-up (T3) remained a
significant predictor, suggesting prognostic value of late-phase
B-hCG trajectories. However, huge standard errors, wide CI, and
reduction in statistical significance for other predictors indicate
collinearity and instability.

The interaction model (Supp Table 4) suggested that a declining
slope at the fifth follow-up was protective in women with low
baseline B-hCG controlling for other covariates. This is
consistent with a synergistic risk pattern as supported by an
interaction plot (Supp Figure 1), with crossing lines between
slope and baseline B-hCG levels. However, wide CI, large
standard errors, and borderline p-value for the T3 slope (p: 0.06)
highlight the fragility of this model.

Model Selection
Comparison of model performance across candidate

specifications (Supp Table 5) showed that the core model

Table 6: Comparative Model Performance

achieved the most favorable balance between fit and parsimony.
It had the lowest AIC and favorable BIC while retaining the
largest number of observations. Likewise, it demonstrated good
discrimination (AUC: 0.75) and low multicollinearity (all VIFs
<1.20). Contrastingly, both extended and interaction models
exhibited slightly higher discrimination, but these gains were
offset by reduced sample size, wide CIs, and high
multicollinearity.

Adjusted Model

Upon adding clinically relevant covariates (Table 5), surgical
evacuation and chemoprophylactic administration were
protective, aligned with expected patterns. Importantly, all three
decay metrics (i.e., percent drop, log B-hCG ratio, and time-to-
75%) remained independently associated with GTN after
adjusting for maternal age, evacuation method, and
chemoprophylaxis. This model balances parsimony with
explanatory power and was chosen for subsequent analyses. It
potentially offers a clinically relevant risk stratification tool that
maintains statistical soundness and clinical interpretability.

Table 5: Adjusted Model for Prediction

Predictors OR 95% CI p
Maternal age 1.03 099-1.07 0.15
Mode of evacuation

Suction curettage 1.00

Surgical evacuation 0.31 0.10-0.82  0.03"
Chemoprophylaxis 0.49 0.26-0.98  0.04"
Percent drop 0.96 0.92-0.98 0.01"
Log B-hCG Ratio 0.86 0.74-0.99  0.04"
Time-to-75% 0.98 0.96—-0.99  0.04

*p<0.05, **p<0.01

Clinical Utility and Model Stability

To complement the adjusted logistic regression model, a GBM
model was developed using the same predictors. While GBM
models do not provide interpretable ORs, feature importance
metrics like gain, cover, and frequency were extracted (Supp
Table 6). Percent drop contributed most substantially (72.3% of
total gain), followed by time-to-75% and log B-hCG ratio,
whereas clinical variables such as maternal age, mode of
evacuation, and chemoprophylaxis contributed minimally. This
finding underscores the dominant predictive value of early -
hCG decay metrics in ML—based risk stratification.

Comparing discrimination and clinical utility, GBM showed
excellent discrimination (AUC: 0.96) but zero NCB across
clinically meaningful thresholds (Table 6; Supp Figure 2). Such
discrepancy reflected poor calibration and overfitting, with the
GBM model tending to predict too many patients as low risk and
producing extreme probability estimates without corresponding
true positives. Conversely, the logistic model demonstrated
more modest discrimination with consistently positive NCB
across decision thresholds.

Metrics Logistic Model Gradient Boosting Model
NCB CV (sNCB) NCB CV (sNCB)
Threshold
10% 0.090 0.516 (0.338 t0 0.703) 0.053 0.040 (-0.041 to 0.121)
20% 0.048 0.328 (0.149 t0 0.519) 0 -0.015 (-0.160 to 0.044)
30% 0.034 0.243 (0.075 to 0.481) 0 -0.073 (-0.326 to 0.004)
40% 0.027 0.216 (0.069 to 0.461) 0 -0.141 (-0.547 to 0)
50% 0.028 0.198 (0.013 to 0.423) 0 -0.236 (-0.856 to 0)
AUC (95% CI) 0.77 (0.70 to 0.83) 0.96 (0.92 to 0.99)
Vol. 18 (Supplement) | 2025 SciEnggJ 473



Both models underwent five-fold cross-validation using
predictors in the adjusted model. Cross-validated sNCB for
logistic regression peaked at 0.516 (95% CI: 0.338-0.703) at the
10% threshold and remained positive through 30 to 50%
thresholds (Table 6). However, GBM yielded lower or negative
sNCB values, with Cls often crossing zero, reflecting poor
generalizability.

Figure 2 highlights such divergence with the logistic model
maintaining stable and positive SNCB across thresholds,
whereas GBM performance declined sharply with widening Cls
at higher thresholds.
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Figure 2: Logistic and GBM Cross-Validated Decision Curve Plots

Bootstrapped calibration of the logistic model yielded an
intercept of —0.12 and a slope of 0.85, indicating slight
overestimation at higher predicted risks but acceptable overall
calibration (Figure 3). Predictions aligned closely with observed
probabilities, with slight overestimation at higher predicted risks
and minor underestimation at lower levels. The calibration curve
demonstrated that predicted risks were directionally and
proportionally consistent with actual outcomes, reinforcing the
model’s reliability in supporting patient-specific risk
stratification (Supp Fig 3).
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Figure 3: Calibration Plot of the Adjusted Logistic Model

Table 7: Diagnostic Performance of Decay Metrics

Stratified and Subgroup Analysis

Stratified analyses evaluated performance of the adjusted
logistic model across key subgroups (Supp Table 7). Subgroup
differences indicate performance heterogeneity such as perfect
prediction for PHM (AUC: 1) but only moderate for CHM
(AUC: 0.75). Surgical evacuation cases (AUC: 0.90) showed
better discrimination compared to suction curettage (AUC: 0.74),
while patients who did not receive chemoprophylaxis exhibited
notably higher accuracy (AUC: 0.97 vs. 0.74). These findings
suggest that $-hCG decay patterns are more informative prior to
chemotherapy influence.

Diagnostic thresholds optimized using the Youden Index (Supp
Table 8) identified clinically interpretable cutoffs specifically,
log B-hCG ratio of 4.12 (approximately 60-fold decline from
baseline), a time-to-75% decline of 25.5 days, and an early
clearance metric of 99.97% drop. Among these, time-to-75%
exhibited the strongest diagnostic performance, with high
sensitivity and negative predictive value for ruling out GTN
progression (Table 7). Other metrics, while statistically
significant, demonstrated limited specificity or impractically
extreme cutoff values, limiting their standalone clinical utility.
A forest plot (Figure 4) summarizes stratified robust Poisson
regression models (Supp Table 9). Slower time to 75% decline
remained significantly associated with GTN across most
subgroups, including complete moles, suction curettage, and
chemoprophylaxis recipients. The effect appeared stronger
among surgical evacuation cases, although small sample size
limited precision. In this analysis, partial moles or patients who
did not receive chemotherapy were unable to reach statistical
significance.

Chemoprophylaxis Not Given
Low Log B-hCG Ratio & Low Log B-hCG Ratio »
Slow Time to 75% ! e Slow Time to 75% le-

Low Percent Drop 2l 1 Low Percent Drop 1

Complete Mole Partial Mole
Low Log B-hCG Ratio ¢ Low Log B-hCG Ratio ——
Slow Time to 75% e Slow Time to 75% L o—

1 1
Low Percent Drop ~ +@+ Low Percent Drop

Suction Curettage Surgical Mode

Low Log B-hCG Ratio ¢ Low Log B-hCG Ratio -8

Slow Time to 75% : s Slow Time to 75% : —e—

Low Percent Drop R 2l i Low Percent Drop 1

Overall 01 1 1050

Low Log B-hCG Ratio ®

Slow Time to 75% ! e

Low Percent Drop :

01 1 1050

Relative Risk (log scale)
Figure 4: Forest Plot of Stratified Relative Risk across Covariates

Metrics Sensitivity Specificity Positive PV Negative PV cce

Percent drop 69% 9% 37% 29% 36%
(62-76%) (6-14%) (32-43%) (19-40%) (31-40%)

Time to 75% 92% 19% 29% 88% 38%
(86-97%) (15-24%) (24-34%) (77-94%) (34-43%)

Log B-hCG Ratio 30% 3% 9% 13% 9%
(21-40%) (2-6%) (6-12%) (6-23%) (7-13%)
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Percent drop occasionally exhibited paradoxical protective
associations, likely reflecting early measurement variability or
non-monotonic B-hCG patterns in non-GTN cases. Similarly,
the log B-hCG ratio did not add significant discriminatory value
when time-to-decline metrics were already incorporated.
Together, these findings position B-hCG decay metrics as
clinically informative early prognostic markers.

DISCUSSION

This study examined the role of early B-hCG decay kinetics in
predicting the development of post-molar GTN. Among several
candidate metrics, the time-to-75% B-hCG decline consistently
emerged as the most robust and clinically interpretable predictor.
Patients who failed to achieve this decline within 25 days are
likely to have a four-fold increased risk of GTN. This pattern
held across subgroups, with this early, shape-sensitive threshold
providing more actionable decision point than conventional
FIGO definitions especially when used with other prognostic
variables.

These findings build upon previous studies underscoring the
importance of early B-hCG decline dynamics. Much of the
earlier literature emphasized slope-based declines (Kader et al.
2024) or B-hCG measurements within the first three weeks post-
evacuation (Sy and Cagayan 2023; Khosravirad et al. 2017).
Other studies highlighted that reaching <5 mIU/mL by 56 days
lowers risk (Albright et al. 2020; Braga et al. 2015), while ratios
and absolute levels at two to four weeks reliably predicted
persistence (Rakprasit et al. 2023; Wolfberg et al. 2005).
Together, these studies support the premise that early
biochemical trajectories contain clinically meaningful signals.

The biological mechanism underlying delayed B-hCG decay is
well established. Persistent or malignant trophoblastic tissue
continues producing B-hCG after evacuation, resulting in slower
clearance (Braga et al. 2019). Instead of the rapid decline
expected from physiologic involuting syncytiotrophoblasts,
neoplastic cytotrophoblasts sustain B-hCG secretion, producing
plateauing or secondary rises (Taylor et al. 2016). The time-to-
75% metric therefore approximates the window in which normal
trophoblastic regression should occur, making delayed clearance
a plausible early marker of malignant persistence.

These observations align with existing FIGO and National
Comprehensive Cancer Network (NCCN) guidelines, which
define GTN using plateauing or rising B-hCG values across
consecutive weekly measurements (Ngan et al. 2021; Abu-
Rustum et al. 2019). Because the time-to-75% captures kinetic
abnormalities earlier, it offers a complementary signal while
remaining compatible with existing follow-up schedules.
Furthermore, the finding that failure to reach a 75% drop within
25 days increases the risk of progression reinforces previous
studies showing that two-week B-hCG ratios <30 predicted GTN
(Kang et al. 2012). Translating it to clinical practice, if f-hCG
levels do not drop by 75% within the first three to four weeks,
clinicians may consider intensifying surveillance, ordering
additional diagnostics, or anticipating earlier intervention.

From a model development perspective, the inclusion of
demographic (e.g., maternal age) and treatment-related variables
(e.g., suction curettage) did not enhance prediction (Savage et al.
2013). This aligns with reports suggesting that early biochemical
behavior often supersedes baseline clinical characteristics in
GTD prognosis (Ngan et al. 2018). In resource-constrained
settings like the Philippines, which have a relatively high GTD
burden, a shift toward B-hCG-driven predictive models may
offer a practical and rapid approach to post-evacuation triage.

The percent drop metric, although statistically significant, had
limited ability to rule out GTN. Similarly, log-ratio thresholds
reflected the protective effect of sharper B-hCG declines but may
be less intuitive for bedside decision-making. These findings
support using multiple metrics in combination to reduce the risk
of misclassification, while maintaining alignment with standard
practice benchmarks such as f-hCG normalization (<5 mIU/mL)
by eight weeks (Abu-Rustum et al. 2019).

The contrasting performance of the GBM and logistic models
warrants attention. Although GBM achieved a high apparent
AUC (0.96), it exhibited poor cross-validated calibration and
minimal net clinical benefit, likely due to sample size limitations
and sparse events contributing to overfitting. This emphasizes
the importance of appropriately matching model complexity to
dataset structure rather than suggesting inherent flaws in ML
methods (Huber et al. 2023; Christodoulou et al. 2019).
Traditional logistic regression retained advantages in
interpretability and biological grounding, making it a more
suitable option for early clinical translation (Topol 2019).

Additionally, this reinforces a broader point in prediction
modeling: discrimination alone is insufficient. Calibration,
validation, and out-of-sample performance are essential and
frequently overlooked in prediction model studies (Parker et al.
2023; Van Calster et al. 2019). In this study, both regression
models confirmed the salience of time-based and relative decay
metrics, with the simpler model offering better calibration and
decision-analytic utility. As a result, these metrics appear more
practical for implementation.

A key strength of this study is its multi-method analytic design.
By combining traditional regression with ML-based approaches
and applying ROC, calibration, and decision-curve analyses, the
findings were triangulated. Stratified AUCs and RR estimates
provided sensitivity analyses across relevant subgroups, while
Youden-based thresholds accompanied by cross-validated DCA
improved the translational value of the models.

Its novelty lies in the use of flexible, trajectory-based markers
rather than fixed B-hCG cutoffs. These metrics remain intuitive,
actionable during early follow-up, and do not require additional
cost. The simplicity of time-to-75% has the potential to improve
patient—clinician communication and support shared decision-
making, especially in the context of early follow-up uncertainty.
However, the retrospective design limits control over B-hCG
sampling intervals, contributing to variable values and
occasional separation issues. Shorter follow-up among GTN
cases may introduce survivor bias or truncation effects in slope-
based metrics. The use of data from single-institution and
inconsistent laboratory sources may also affect generalizability.
Thresholds identified here may not extrapolate directly to other
healthcare settings.

GBM performance remained inconsistent, with limited NCB
likely due to scaling procedures, data limitations, or sparse
events. Although hierarchical and parsimonious modeling
approaches, along with diagnostic checks, helped address these
constraints, caution remains essential when interpreting outlier
estimates, especially in stratified analyses.

Based on the findings, percent drop and time-to-75% may be
incorporated into post-evacuation protocols as preliminary
screening tools during the first two to four weeks. For example,
a delayed or prolonged time-to-75% (>25 days) may prompt
early referral or intensified surveillance. Prospective validation
in diverse clinical and assay contexts is needed to test
generalizability. Future directions include developing point-of-
care tools, Bayesian hybrid models, and cost-effectiveness
analyses to support implementation.
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While ML-based models offered some insights, traditional
logistic regression remains the most appropriate starting point
for clinical exploration. Further improvements may involve
adding complementary diagnostic markers and standardizing -
hCG assays across laboratories. Low-cost mobile monitoring
tools also warrant exploration, particularly in settings with
constrained access to laboratory and diagnostics.

Finally, this study highlights the broader gap in the Philippines
regarding locally validated, dynamic prediction tools. Given the
rarity of GTD, establishing a harmonized GTD registry would
enable larger-scale evaluation of B-hCG trajectory metrics and
support more timely detection and management, particularly in
resource-limited environments.

CONCLUSION

This study offers a paradigm shift in GTN surveillance, moving
beyond fixed biomarker thresholds to maximize repeated
measurements using flexible, trajectory-based B-hCG decay
metrics. These metrics exhibited early, reliable, and clinically
meaningful signals of malignant progression. Machine learning
offered the potential of non-linear models yet traditional
regression methods showed superior calibration and clinical

utility, thus, reinforcing the importance of model interpretability.

Time-to-75% decline offered actionable insights within four
weeks after molar evacuation. The use of these clinically
interpretable measures empowers both clinicians and patients
with timely, personalized insights which could prompt
intensified surveillance or earlier intervention, compared with
current practice, which delays action until fixed cutoffs are met,
often several weeks later.

Furthermore, these simple, intuitive decay thresholds offer a
feasible framework for tailoring GTN follow-up, especially in
resource-constrained settings where follow-up is not always
optimal. However, external validation across diverse
populations, refinement of B-hCG decay patterns, and improved
disease registries will be needed to ensure that these early
detection strategies translate into improved outcomes for GTD
patients.
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SUPPLEMENTAL DATA

Appendix A: Supplementary Tables

Table 1: Distribution of Serum B-hCG across Follow-up Visits

Follow-up Median (IQR) Obs. Follow-up Median (IQR) Obs.
1 1,250 (300, 4,520) 413 12 1.20 (0.10, 1.21) 108
2 131 (23.04, 508.24) 412 13 1.20 (0.10, 1.21) 57
3 23.10 (4.10, 134.60) 402 14 1.20 (0.69, 1.20) 33
4 5.25 (1.60, 38.29) 372 15 1.20 (0.52, 1.20) 20
5 2.05 (1.00, 8.60) 346 16 0.10 (0.10, 1.10) 12
6 1.20 (0.11, 3.40) 308 17 0.14 (0.10, 1.10) 8
7 1.20 (0.15, 2.00) 267 18 0.10 (0.10, 0.10) 6
8 1.20 (0.10, 1.21) 238 19 0.10 (0.10, 0.10) 5
9 1.20 (0.10, 1.21) 217 20 0.10 (0.10, 0.10) 3
10 1.20 (0.10, 1.21) 195 21 0.10 1
11 1.20 (0.10, 1.21) 155 22 0.10 1
Table 2: Crude Association of Flexible Decay Metrics with GTN
Metrics OR (95% CI) p-value AUC (95% CI)
Percent drop 0.94 (0.91 -0.97) <0.01* 0.94 (0.92 - 0.97)
Log 3-hCG Ratio 0.77 (0.68 — 0.806) <0.01* 0.68 (0.62 - 0.74)
Drop rate
Time-to-50% 0.99 (0.97 — <1.00) 0.05* 0.52 (0.45 - 0.58)
Time-to-75% 0.99 (0.97 — <1.00) 0.03* 0.54 (0.47 — 0.61)
Time-t0-90% 0.98 (0.96 — 0.99) 0.01* 0.57 (0.51 — 0.64)
Log decline rate 4,397 (2.86 — 11,075,723) 0.03* 0.57 (0.48 — 0.66)
Time-to-threshold
Time to 100 mIU/mL 1.00 (0.99 — 1.01) 0.39 0.64 (0.50 — 0.77)
Time to 10 mIU/mL 1.00 (0.98 — 1.01) 0.80 0.42 (0.33 - 0.51)
Time to 5 mIU/mL 0.99 (0.97 - 1.01) 0.56 0.49 (0.38 - 0.61)
Early doubling 7.28 (2.54 — 22.40) <0.01* 0.55 (0.51 - 0.59)
Parametric slope 0.62 (0.07 — 5.18) 0.66 0.52 (0.46 — 0.59)
Segmental slopes
T1 (=2 follow-ups) 117.21 (17.20 — 888.52) <0.01* 0.68 (0.62 - 0.75)
T2 (=4 follow-ups) 22,4180.93 (1,979.05 — 42,828,994) <0.01* 0.76 (0.68 — 0.85)
T3 (5th follow-up) 915.77 (0.75 — 10,538,688) 0.07 0.76 (0.61 —0.91
Table 3: Extended Model
Predictors OR 95% CI p-value
Segmental slopes
T1 (22 follow-ups) 2.09 0.13 -25.90 0.01
T2 (=4 follow-ups) 1.74 0.21 - 28.90 0.68
T3 (5th follow-up) 0.26 0.06 — 0.66 0.03*
Percent drop 0.99 0.87-10.99 0.69
Time-to-75% 0.77 0.44-1.03 0.35
Time-to-10% 1.00 0.94 - 1.05 0.99
Log B-hCG Ratio 1.04 0.32-3.33 0.95
Table 4: Interaction Model
Predictors OR 25% CI p-value
Segmental slopes
T1 (22 follow-ups) 2.69 0.29 — 28.30 0.44
T2 (=4 follow-ups) 0.81 0.44 —2.43 0.56
T3 (5th follow-up) 0.22 0.04 -1.12 0.06
Slope T3 * 3-hCG 0.01 <0.01 -0.43 0.02*
Baseline B-hCG 0.07 <0.01 - 0.96 0.32
Time-to-75% 0.96 0.83 - 1.04 0.53
Time-to-10% 1.00 0.96 -1.02 0.82
Log B-hCG Ratio 1.17 0.42 —2.94 0.74
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Table 5: Summary of Model Comparison Metrics

Table 8: Summary Measures of Early B-hCG Decay Metrics

Metrics Median Range Youden’s
Percent drop 99.99 -12,720.51 to 100 99.97
Time-to-75% 13.00 2 to 400 25.50
Log B-hCG ratio 4.50 0.03 to 15.61 4.12

Table 9: Stratified Risk Estimation Models of Early Decay Metrics and GTN

Subgroup Predictor Robust RR (95% CI)  p-value
Overall Low Percent Drop 0.04 (0.02 - 0.08) <0.01*
Slow Time to 75% 4.02 (2.20 — 7.36) <0.01*
Low Log B-hCG Ratio 0.96 (0.72 - 1.27) 0.77
Histology
Partial mole Low Percent Drop 1.27°9 0.009
Slow Time to 75% 3.00 (0.39 —22.87) 0.29
Low Log B-hCG Ratio 1.00 (0.23 — 4.31) 0.99
Complete mole Low Percent Drop 0.05 (0.02 - 0.09) <0.01*
Slow Time to 75% 4.06 (2.14 - 7.69) <0.01*
Low Log B-hCG Ratio 0.92 (0.69 — 1.24) 0.59
Mode of evacuation
Suction curettage Low Percent Drop 0.05 (0.03 - 0.10) <0.01*
Slow Time to 75% 2.98 (1.62 — 5.50) <0.01*
Low Log B-hCG Ratio 1.02 (0.75 - 1.38) 0.92
Surgical approach Low Percent Drop 1.19-10 (8.59-11 — 3.24-10)  <(0.01*
Slow Time to 75% 11.94 (1.84 — 77.40) 0.01*
Low Log B-hCG Ratio 0.74 (0.42 — 1.30) 0.30
Chemoprophylaxis
Not given Low Percent Drop 236710 (1.71-10 = 3.24-10)  <0.01*
Slow Time to 75% 2.17 (0.94 - 5.01) 0.07
Low Log B-hCG Ratio 1.22 (0.95-1.57) 0.12
Given Low Percent Drop 0.05 (0.03 - 0.10) <0.01*
Slow Time to 75% 5.02 (2.29 — 11.00) <0.01*
Low Log B-hCG Ratio 0.88 (0.60 —1.30) 0.53

Model n AIC BIC LR x? p-value AUC VIF
Core 400 313.43 329.39 40.3 <0.01* 0.75 (0.68 — 0.81) All <1.20
Exctended 286 31.03 60.27 271 <0.01* 0.91 (0.74 — 1.00) Max = 1.59
Interaction 286 43.04 75.94 171 <0.01* 0.84 (0.54 — 1.00) Max = 4.76
Adjusted 400 309.19 337.13 56.5 <0.01* 0.77 (0.70 — 0.83) All < 1.40

Table 6: GBM Feature Importance Metrics
Feature Gain Cover Frequency
Percent drop 0.723 0.475 0.315
Time-to-75% 0.142 0.174 0.172
Log B-hCG ratio 0.066 0.182 0.295
Maternal age 0.061 0.161 0.207
Mode of evacuation 0.006 0.006 0.009
Chemoprophylaxis 0.001 0.001 0.002
Table 7: Stratified Discrimination Metrics
Subgroup AUC 95% CI
Histology
Partial mole 1.00 -
Complete mole 0.75 0.68 —0.81
Mode of evacuation
Suction curettage 0.74 0.67 —0.82
Surgical evacnation 0.90 0.70 — 1.00
Chemoprophylaxis
Not given 0.97 0.95-1.00
Given 0.74 0.67 —0.82
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Appendix B: Supplementary Figures
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Figure 1: Interaction Plot between Segmental Slopes and Baseline B-hCG
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ROC: Logistic vs GBM
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Figure 2: ROC Plot of Logistic and GBM Models in Predicting GTN
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