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ABSTRACT 
 
 

ackground: Molar pregnancy is a rare condition 
carrying a 15-22% risk of progression to gestational 
trophoblastic neoplasia (GTN). Although serial β-
hCG monitoring is standard, its ability to predict 
early malignant change early remains uncertain. 

 
This study examined whether flexible β-hCG decay metrics 
could improve early GTN prediction compared with 
conventional thresholds, and whether machine-learning 
classifiers provide meaningful gains beyond interpretable 
statistical models. 
 
Methods: This retrospective cohort analyzed 413 post-molar 
patients with longitudinal β-hCG data. Seven decay metrics 
were derived from early follow-up measurements and evaluated 
using logistic and gradient boosting machine (GBM) models. 

Model performance was assessed through cross-validated 
discrimination (area under the curve (AUC)), calibration, and 
decision-curve analysis (DCA). 
 
Results: The GBM model achieved higher apparent 
discrimination (AUC: 0.96) but negligible net clinical benefit 
(NCB) across thresholds, indicating probable overfitting and 
limited bedside utility. A parsimonious logistic model (AUC: 
0.77; calibration slope: 0.85) showed stable calibration and 
consistent net benefit for identifying low-risk patients. Among 
the decay metrics, time-to-75% β-hCG decline (~25 days) 
emerged as the most robust and interpretable predictor 
(sensitivity 92%, negative predictive value 88%), offering a 
simple signal of malignant persistence. 
 
Conclusion: Early β-hCG decay dynamics, particularly time-to-
75% decline, can guide risk-adaptive follow-up after molar 
evacuation. Complex machine-learning models contributed little 
beyond traditional approaches in this moderate-sized cohort. 
These findings support prospective validation and exploration of 
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cost-effective surveillance models tailored to resource-limited 
settings. 
 
 
INTRODUCTION 
 
Gestational trophoblastic diseases (GTD) progress to GTN in 
roughly 14.9-21.5% of cases, yet early progression is often 
clinically silent (Shana Rahman and Sudhamani 2023; Riahi et 
al. 2020). Routine surveillance relies on serial β-hCG 
monitoring, but static thresholds and fixed cut-offs often fail to 
capture the heterogeneous regression patterns seen after molar 
evacuation (Galingan and Cagayan 2021; Bakhtiyari et al. 2015; 
Seckl et al. 2010). Timely identification of patients who require 
intensified surveillance or intervention, therefore, remains a key 
clinical challenge. 
 
Multiple analytic strategies have been proposed to capture the 
dynamics of β-hCG regression given its potential as a basis for 
early risk stratification. Slope-based decay metrics using weekly 
β-hCG assessments can identify GTN up to two weeks earlier 
than conventional criteria (Zhao et al. 2017), while early ratio-
based markers at fixed intervals (e.g., one- or two-week 
percentage declines) reach accuracies approaching 90% in some 
studies (Galingan and Cagayan 2021). More advanced 
approaches, like joint models and latent class trajectory 
analyses, showed strong associations between non-linear β-hCG 
trends and post-molar GTN risk, with hazards increasing 
roughly three-fold per log-unit rise (Riahi et al. 2020). 
 
Despite these advances, translation into clinical practice remains 
limited. The siloed application of predictive measures like 
regression slopes (Bakhtiyari et al. 2015) or class-based models 
(Burny et al. 2016) hinders synthesis into a broader decision 
framework. Previously proposed cut-offs (e.g., 508 mIU/mL at 
3 weeks, 185 mIU/mL at 5 weeks) lack generalizability across 
populations (Sy and Cagayan 2023), while probabilistic models 
balancing accuracy with interpretability remain rarely used. This 
challenge is compounded in rare diseases like GTD in resource-
limited settings, where small sample sizes, incomplete 
surveillance, and high-dimensional data create additional 
constraints. 
 
This study evaluates a set of early, flexible β-hCG decay metrics 
within interpretable and adaptable predictive frameworks (i.e., 
logistic regression, machine learning or ML) to determine 
whether these measures yield complementary, clinically 
actionable prognostic information before GTN becomes 
apparent. The researchers hypothesize that these decay metrics 
can provide additional, usable prognostic signals beyond 
conventional thresholds when incorporated into parsimonious, 
well-calibrated models, thereby enhancing early, risk-adapted 
follow-up care without presupposing categorical superiority 
over existing rules. 
 
 

MATERIALS AND METHODS 
 
Study Design 
A retrospective cohort study was conducted using pooled data 
from the Philippine Society for the Study of Trophoblastic 
Diseases, Inc. (PSSTD). Formal sample size and power 
calculations indicated that approximately 1,049 women would 
ideally be required to detect a small effect size (OR ~1.75) at 
95% confidence and 80% power, assuming a 10–15% 
prevalence of malignant transformation or chemoresistance 
(Finch et al 2023; Altieri et al. 2003). However, given the rarity 
of GTD and registry constraints, all available observations were 
included, yielding a final analytic cohort of 413 patients who 
underwent molar evacuation and serial β-hCG monitoring until 
remission or progression to GTN. This dataset combined an 
earlier cohort of 258 women with both partial (PHM) and 
complete (CHM) moles and a later cohort of 155 women with 
CHM only. 
 
The achievable sample (compared to the target) limits statistical 
power for detecting small effects and constrains model 
complexity. A parsimonious model specification was prioritized 
to mitigate potential overfitting and instability, with results 
validated through nested cross-validation and bootstrap 
resampling. Findings are to be interpreted as exploratory and 
hypothesis-generating pending prospective validation. 
 
Variables and Metrics 
The dataset was anonymized and de-identified, with ethical 
approval obtained from the University of the Philippines Manila 
Research Ethics Board (UPMREB 2024-0368-01) prior to data 
processing. A complete-case analysis was used, as β-hCG 
metrics require at least two valid follow-up values per patient, 
thus making single-value imputation mathematically 
inconsistent. Furthermore, missingness was concentrated in 
early follow-up points and largely due to loss to follow-up rather 
than data omission. 
 
The primary outcome was progression to GTN, defined using 
the International Federation of Gynecology and Obstetrics 
(FIGO) criteria. GTD patients were monitored serially from 
molar evacuation until biochemical remission or progression to 
GTN. 
 
The registry originally contained clinico-demographic variables 
such as maternal age, gravidity, parity, mode of evacuation, 
histologic type, and chemoprophylaxis status, along with all 
available β-hCG values during follow-up. Seven flexible decay 
metrics were derived from the initial post-evacuation β-hCG 
values to quantify early hormone decline. These were selected 
for their clinical interpretability, simplicity, and feasibility in 
low-resource settings. The operational definitions, derivation 
formulae, and clinical interpretations are summarized in Table 1. 
These derived variables were computed post hoc from serial β-
hCG data and were not part of the original registry dataset. 
Segmental slopes refer to piecewise log-linear slopes computed 
within defined early follow-up windows using simple 
regressions, while the parametric slope corresponds to the fixed-
effect coefficient from a mixed-effects model, representing the 
average early decline rate per patient. 
 

Table 1: Summary of Flexible β-hCG Decay Metrics for Early GTN Prediction 
Metric Formula Interpretation 

Percent Drop [(β₀ - β₇) / β₀] × 100 Approximates proportional decline, between pre-
evacuation and seventh follow-up β-hCG 

Log β-hCG Ratio Log (Pre-evacuation β-hCG / First post-
evacuation β-hCG) 

Reflects early treatment response, a ratio >2 to 5 
suggests sharp drop (protective) 

Log Decline Rate [log(β₀) - log(β₇)] / (t₇ - t₀) Models log-linear decay rate, flatter slopes imply slower 
decline 
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Time to Threshold Earliest day β-hCG < 100 / 10 / 5 Time to reach clinical reference β-hCG levels (<100, 
<10, and <5 mIU/mL) 

Early Doubling β₇ > 2 × β₀ Binary indicator of rapid rise, potentially suggestive of 
GTN 

Parametric Slope Estimated from first 2–5 points or model-
based 

Continuous rate of decline from mixed-effects or linear 
regression 

Segmental Slopes Slopes T1 (first 2 visits), T2 (visits 3-4), T3 
(5th visit) from linear fits over follow-up bins 

Captures phase-specific decay patterns in early GTD 
surveillance 

Statistical Analysis 
Bivariate comparisons between GTN and non-GTN cases used 
χ² and Wilcoxon rank-sum tests. Logistic regression, 
summarized using odds ratios (OR), was performed 
hierarchically: starting with a core model of decay metrics, 
extending to additional predictors, and subsequently adding 
interaction terms. Interaction terms (i.e., slope × baseline β-
hCG) were explored because the prognostic meaning of an early 
decline rate may depend on initial tumor burden. A slow slope 
from a very high baseline can imply different risk than the same 
slope from a low baseline. Clinically important covariates were 
incorporated into the best-fitting model and used for an adjusted 
model. 
 
A gradient boosting model (GBM) was chosen as the ML 
comparator because it accommodates non-linear relationships 
and variable interactions efficiently without the high 
computational demand or sample size required by neural 
networks or other ML frameworks (Li et al. 2022). Alternative 
algorithms (random forests, support vector machines, neural 
networks) were initially explored in pilot runs but offered no 
clear performance advantage and required larger samples to tune 
reliably. GBM therefore provided a pragmatic balance between 
flexibility, interpretability, and computational feasibility for this 
modest-sized dataset. 
The GBM model was trained on the same set of predictors 
following a 70/30 train-test split, with feature importance 
summarized by gain, cover, and frequency. Hyperparameters 
followed default boosting settings (i.e., learning rate: 0.1, 
maximum tree depth: 6, boosting rounds: 100) with internal five-
fold cross-validation to minimize overfitting. No further 
optimization was done to avoid inflating model performance 
given the limited event count. As such, its results reflect baseline 
GBM behavior rather than tuned performance. 
 
Model discrimination was assessed using the area under the 
receiver operating characteristic (ROC) curve (AUC, 95% 
confidence intervals (CI), DeLong method). Optimal binary 
cutoffs were determined via Youden’s index, and diagnostic 
accuracy was summarized as sensitivity, specificity, predictive 
values (PV), and correct classification proportion (CCP). Model 
fit was compared using Akaike (AIC) and Bayesian information 

criteria (BIC), sample size reduction, and variance inflation 
factors (VIF) for multicollinearity. 
 
Net clinical benefit (NCB) was evaluated with decision curve 
analysis (DCA) across thresholds of 10%, 20%, and 30%, 
representing clinically plausible intervention points (Vickers 
and Elkin 2006). Five-fold cross-validation was used to compute 
standardized net clinical benefit (sNCB) with confidence 
intervals. Calibration was assessed with 200 bootstrapped 
resamples, reporting slope, intercept, and mean absolute error 
(MAE), and generating bias-corrected calibration plots. 
 
The robustness of early β-hCG decay metrics was examined via 
a series of sensitivity and subgroup analyses. Stratified analyses 
across relevant subgroups (i.e., histological type, mode of 
evacuation, chemoprophylaxis status) were summarized using 
relative risks (RR) estimated from Poisson regression with 
robust errors. Similarly, subgroup-specific AUCs were 
computed from logistic regression models, while cross-
validation procedures were repeated for both logistic and GBM 
models to evaluate generalizability. 
 
All analyses were performed in R version 4.5.0 (R Core Team 
2025) using the following packages: broom (Robinson et al. 
2024), caret (Kuhn 2008), ggplot2 (Wickham 2016), lme4 
(Bates et al. 2015), lmtest (Zeileis and Hothorn 2002), pROC 
(Robin et al. 2011), purrr (Wickham and Henry 2025), 
randomForest (Liaw and Wiener 2002), rmda (Brown 2018), 
sandwich (Zeileis et al. 2024), xgboost (Chen and Guestrin 
2016), and zoo (Zeileis and Grothendieck 2005). 
 
 
RESULTS 
 
Sample Characteristics 
Table 2 compares the outcome groups for context and was meant 
to summarize distributions prior to multivariable modeling. Of 
the total, the majority of the women experienced spontaneous 
remission, while a small yet significant proportion (18.6%, 95% 
CI: 15 to 22.74%) experienced GTN. 
 

Table 2: Baseline Characteristics of Study Participants 

Characteristics Total 
(n = 413) 

Non-GTN 
(n = 336) 

GTN 
(n = 77) p 

Maternal Age     
<40 years 334 (80.87%) 271 (80.65%) 63 (81.82%) 0.82 ≥40 years 79 (19.13%) 65 (19.35%) 14 (18.18%) 

Gravidity     
G1 115 (27.85%) 93 (27.68%) 22 (28.57%) 

0.07 G2 – G3 148 (35.84%) 113 (33.63%) 35 (45.45%) 
G4 and above 150 (36.32%) 130 (38.69%) 20 (25.97%) 

Parity     
Nulliparous 125 (30.27%) 101 (30.06%) 24 (31.17%) 0.85 Parous 288 (69.73%) 235 (69.94%) 53 (68.83%) 

Pre-evacuation β-hCG     
Median 197,369 192,585 222,815 0.16 Interquartile range 10,000, 413,216 10,000, 407,949 14,911, 594,406 

Post-evacuation β-hCG     

1st Follow-up 1,250 (300, 4,520) 955.11 
(164.95, 3,062.50) 

5,046 
(1,371, 18,400) 0.01** 
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Characteristics Total 
(n = 413) 

Non-GTN 
(n = 336) 

GTN 
(n = 77) p 

2nd Follow-up 131 (23.07, 508.24) 80.45 
(14.68, 235.18) 

1,883.75 
(518.39, 9,028.59) 0.01** 

3rd Follow-up 23.10 (4.10, 134.60) 14.30 
(3.30, 44.75) 

1,779 
(525, 3,914.26) 0.01** 

Histological Type     
PHM 43 (10.41%) 37 (11.01%) 6 (7.79%) 0.40 CHM 370 (89.59%) 299 (88.99%) 71 (92.21%) 

Mode of Evacuation     
Suction curettage 323 (78.21%) 253 (75.30%) 70 (90.91%) 0.01** Surgical evacuation 90 (21.79%) 83 (24.70%) 7 (9.09%) 

Chemoprophylaxis     
Not given 87 (21.07%) 59 (17.56%) 28 (36.36%) 0.01** Given 326 (78.93%) 277 (82.44%) 49 (63.64%) 

Follow-up (in weeks) 33 (19, 39) 34 (29, 44) 9 (7, 12) 0.01** 
*p<0.05, **p<0.01 

Maternal age and parity were comparable across groups, with 
most women being multigravida. However, the GTN group had 
relatively more women with two to three pregnancies and fewer 
patients with at least four pregnancies. Pre-evacuation β-hCG 
levels were predominantly high without significant differences 
between outcomes. Histology was overwhelmingly CHM with 
both groups, and slightly more common in GTN, though not 
statistically significant. 
 
GTN was more frequent among women who underwent suction 
curettage and who did not receive chemoprophylaxis. Median 
follow-up was substantially longer in remission than in GTN, 
indicating earlier recognition and treatment initiation in the latter. 
 
Furthermore, median β-hCG values fell sharply over the first 
three visits, but GTN cases showed markedly slower declines 
(p < 0.01 at each follow-up). Figure 1 illustrates these divergent 
trajectories, with non-GTN cases exhibiting rapid decreases, and 
GTN cases showing slower, irregular declines or early plateaus. 
Longitudinal distributions across 22 visits (Supp Table 1) 
demonstrated convergence toward very low values (<2 
mIU/mL) after week 6, but wide early interquartile ranges 
highlighted heterogeneous decline rates. These findings 
underscore the prognostic relevance of early follow-up and 
justify modeling focused on initial decay patterns rather than 
absolute thresholds. 
 

 
Figure 1: Individual β-hCG Trajectories over Time 

Predictive Utility of Flexible β-hCG Decay Metrics 
Univariable analyses first evaluated each decay metric 
individually before proceeding to multivariable modeling. 
Flexible decay metrics (Table 3) revealed marked differences 
between outcomes. GTN cases had apparent mean percent 
increase in β-hCG (−164.81% vs. 99.35%, p<0.01), where 
negative values indicate increases due to drop metric convention, 
more frequent early doubling (11.7% vs. 1.8%, p<0.01), and 
shallower or reversed slopes across early phases (T1–T3). 
Although overall parametric slopes and drop times were not 
significantly different, segmental analyses showed that GTN 
cases declined more slowly, plateaued earlier, and occasionally 
re-elevated, highlighting the diagnostic utility of granular slope 
metrics. 
 

Table 3: Summary of Flexible β-hCG Decay Metrics across GTN Status 

Metrics Total 
(n = 413) 

Non-GTN 
(n = 336) 

GTN 
(n = 77) p 

Percent drop 50.1 ± 645.5 99.4 ± 10.4 -164.8 ± 1483.4 0.01** 
Log β-hCG Ratio -0.06 ± 0.04 -0.06 ± 0.03 -0.05 ± 0.05 0.07 
Drop rate     

Time-to-50% 23.9 ± 38.6 25.6 ± 41.7 15.7 ± 13.7 0.40 
Time-to-75% 26.6 ± 41.2 28.5 ± 44.3 16.5 ± 14.8 0.14 
Time-to-90% 28.9 ± 41.5 31.1 ± 44.3 15.9 ± 12.9 0.03* 

Log decline rate -0.06 ± 0.04 -0.06 ± 0.03 -0.05 ± 0.05 0.07 
Time-to-threshold     

Time to 100 mIU/mL 50.4 ± 41.7 50 ± 42.2 58.4 ± 33.2 0.01** 
Time to 10 mIU/mL 73.8 ± 46.7 73.9 ± 47.3 70 ± 11.1 0.01** 
Time to 5 mIU/mL 82.6 ± 50.6 82.8 ± 51.1 72.6 ± 13.5 0.01** 

Early doubling 15 (3.63%) 6 (1.79%) 9 (11.69%) 0.01** 
Parametric slope -0.36 ± 0.12 -0.36 ± 0.12 -0.36 ± 0.11 0.55 
Segmental slopes     

T1 (≤2 follow-ups) -0.22 ± 0.14 -0.23 ± 0.14 -0.15 ± 0.13 0.01** 
T2 (≤4 follow-ups) -0.07 ± 0.10 -0.07 ± 0.09 -0.01 ± 0.09 0.01** 
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Metrics Total 
(n = 413) 

Non-GTN 
(n = 336) 

GTN 
(n = 77) p 

T3 (5th follow-up) -0.01 ± 0.05 -0.02 ± 0.03 0.01 ± 0.16 0.01** 
*p<0.05, **p<0.01 

Crude logistic models (Supp Table 2) identified percent drop 
from baseline as the strongest discriminator (OR: 0.94 per 1% 
increase; AUC: 0.94). Early β-hCG doubling strongly increased 
GTN risk (OR: 7.28, p<0.01), and segmental slopes were 
predictive of malignant progression. Extremely high or unstable 
odds for some metrics (e.g., log decline rate, T2 slope) reflected 
separation artifacts. 
 
By contrast, time-to-threshold metrics and parametric slopes did 
not show a clear association in this sample, consistent with their 
computational structure. 
 
Multivariable Models 
In this section, all subsequent estimates refer to multivariable 
models adjusting for the variables specified in each model. 
 
Core Model 
The first multivariable model, which contained percent drop, log 
β-hCG ratio, and time-to-75%, produced stable and interpretable 
estimates (Table 4). All three predictors were statistically 
significant, and aligned with biological plausibility, such that a 
greater percent drop and higher log ratio of follow-up to baseline 
β-hCG were protective, while a slower decline to 75% of pre-
evacuation levels was associated with higher odds of GTN 
adjusting for these decay metrics. 
 
Table 4: Core Model 

Predictors OR 95% CI p 
Percent drop 0.95 0.91 – 0.98 0.01** 
Log β-hCG Ratio 0.86 0.74 – 0.98 0.03* 
Time-to-75% 0.98 0.96 – 0.99 0.03* 

*p<0.05, **p<0.01 

Extended and Interaction Models 
Adding segmental slopes in the extended model (Supp Table 3) 
modestly improved apparent performance, but attenuated effects 
of other metrics. After adjustment for clinical covariates, only 
the segmental slope during the fifth follow-up (T3) remained a 
significant predictor, suggesting prognostic value of late-phase 
β-hCG trajectories. However, huge standard errors, wide CI, and 
reduction in statistical significance for other predictors indicate 
collinearity and instability. 
 
The interaction model (Supp Table 4) suggested that a declining 
slope at the fifth follow-up was protective in women with low 
baseline β-hCG controlling for other covariates. This is 
consistent with a synergistic risk pattern as supported by an 
interaction plot (Supp Figure 1), with crossing lines between 
slope and baseline β-hCG levels. However, wide CI, large 
standard errors, and borderline p-value for the T3 slope (p: 0.06) 
highlight the fragility of this model. 
 
Model Selection 
Comparison of model performance across candidate 
specifications (Supp Table 5) showed that the core model 

achieved the most favorable balance between fit and parsimony. 
It had the lowest AIC and favorable BIC while retaining the 
largest number of observations. Likewise, it demonstrated good 
discrimination (AUC: 0.75) and low multicollinearity (all VIFs 
<1.20). Contrastingly, both extended and interaction models 
exhibited slightly higher discrimination, but these gains were 
offset by reduced sample size, wide CIs, and high 
multicollinearity. 
 
Adjusted Model 
Upon adding clinically relevant covariates (Table 5), surgical 
evacuation and chemoprophylactic administration were 
protective, aligned with expected patterns. Importantly, all three 
decay metrics (i.e., percent drop, log β-hCG ratio, and time-to-
75%) remained independently associated with GTN after 
adjusting for maternal age, evacuation method, and 
chemoprophylaxis. This model balances parsimony with 
explanatory power and was chosen for subsequent analyses. It 
potentially offers a clinically relevant risk stratification tool that 
maintains statistical soundness and clinical interpretability. 
 
Table 5: Adjusted Model for Prediction 

Predictors OR 95% CI p 
Maternal age 1.03 0.99 – 1.07 0.15 
Mode of evacuation    

Suction curettage 1.00   
Surgical evacuation 0.31 0.10 – 0.82 0.03* 

Chemoprophylaxis 0.49 0.26 – 0.98 0.04* 
Percent drop 0.96 0.92 – 0.98 0.01* 
Log β-hCG Ratio 0.86 0.74 – 0.99 0.04* 
Time-to-75% 0.98 0.96 – 0.99 0.04* 

*p<0.05, **p<0.01 

Clinical Utility and Model Stability 
To complement the adjusted logistic regression model, a GBM 
model was developed using the same predictors. While GBM 
models do not provide interpretable ORs, feature importance 
metrics like gain, cover, and frequency were extracted (Supp 
Table 6). Percent drop contributed most substantially (72.3% of 
total gain), followed by time-to-75% and log β-hCG ratio, 
whereas clinical variables such as maternal age, mode of 
evacuation, and chemoprophylaxis contributed minimally. This 
finding underscores the dominant predictive value of early β-
hCG decay metrics in ML–based risk stratification. 
 
Comparing discrimination and clinical utility, GBM showed 
excellent discrimination (AUC: 0.96) but zero NCB across 
clinically meaningful thresholds (Table 6; Supp Figure 2). Such 
discrepancy reflected poor calibration and overfitting, with the 
GBM model tending to predict too many patients as low risk and 
producing extreme probability estimates without corresponding 
true positives. Conversely, the logistic model demonstrated 
more modest discrimination with consistently positive NCB 
across decision thresholds. 
 

Table 6: Comparative Model Performance 

Metrics Logistic Model Gradient Boosting Model 
NCB CV (sNCB) NCB CV (sNCB) 

Threshold     
10% 0.090 0.516 (0.338 to 0.703) 0.053 0.040 (-0.041 to 0.121) 
20% 0.048 0.328 (0.149 to 0.519) 0 -0.015 (-0.160 to 0.044) 
30% 0.034 0.243 (0.075 to 0.481) 0 -0.073 (-0.326 to 0.004) 
40% 0.027 0.216 (0.069 to 0.461) 0 -0.141 (-0.547 to 0) 
50% 0.028 0.198 (0.013 to 0.423) 0 -0.236 (-0.856 to 0) 

AUC (95% CI) 0.77 (0.70 to 0.83) 0.96 (0.92 to 0.99) 
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Both models underwent five-fold cross-validation using 
predictors in the adjusted model. Cross-validated sNCB for 
logistic regression peaked at 0.516 (95% CI: 0.338–0.703) at the 
10% threshold and remained positive through 30 to 50% 
thresholds (Table 6). However, GBM yielded lower or negative 
sNCB values, with CIs often crossing zero, reflecting poor 
generalizability. 
 
Figure 2 highlights such divergence with the logistic model 
maintaining stable and positive sNCB across thresholds, 
whereas GBM performance declined sharply with widening CIs 
at higher thresholds. 
 

 
Figure 2: Logistic and GBM Cross-Validated Decision Curve Plots 

Bootstrapped calibration of the logistic model yielded an 
intercept of –0.12 and a slope of 0.85, indicating slight 
overestimation at higher predicted risks but acceptable overall 
calibration (Figure 3). Predictions aligned closely with observed 
probabilities, with slight overestimation at higher predicted risks 
and minor underestimation at lower levels. The calibration curve 
demonstrated that predicted risks were directionally and 
proportionally consistent with actual outcomes, reinforcing the 
model’s reliability in supporting patient-specific risk 
stratification (Supp Fig 3). 
 

 
Figure 3: Calibration Plot of the Adjusted Logistic Model 

Stratified and Subgroup Analysis 
Stratified analyses evaluated performance of the adjusted 
logistic model across key subgroups (Supp Table 7). Subgroup 
differences indicate performance heterogeneity such as perfect 
prediction for PHM (AUC: 1) but only moderate for CHM 
(AUC: 0.75). Surgical evacuation cases (AUC: 0.90) showed 
better discrimination compared to suction curettage (AUC: 0.74), 
while patients who did not receive chemoprophylaxis exhibited 
notably higher accuracy (AUC: 0.97 vs. 0.74). These findings 
suggest that β-hCG decay patterns are more informative prior to 
chemotherapy influence. 
 
Diagnostic thresholds optimized using the Youden Index (Supp 
Table 8) identified clinically interpretable cutoffs specifically, 
log β-hCG ratio of 4.12 (approximately 60-fold decline from 
baseline), a time-to-75% decline of 25.5 days, and an early 
clearance metric of 99.97% drop. Among these, time-to-75% 
exhibited the strongest diagnostic performance, with high 
sensitivity and negative predictive value for ruling out GTN 
progression (Table 7). Other metrics, while statistically 
significant, demonstrated limited specificity or impractically 
extreme cutoff values, limiting their standalone clinical utility. 
A forest plot (Figure 4) summarizes stratified robust Poisson 
regression models (Supp Table 9). Slower time to 75% decline 
remained significantly associated with GTN across most 
subgroups, including complete moles, suction curettage, and 
chemoprophylaxis recipients. The effect appeared stronger 
among surgical evacuation cases, although small sample size 
limited precision. In this analysis, partial moles or patients who 
did not receive chemotherapy were unable to reach statistical 
significance. 
 

 
Figure 4: Forest Plot of Stratified Relative Risk across Covariates 

 

Table 7: Diagnostic Performance of Decay Metrics 
Metrics Sensitivity Specificity Positive PV Negative PV CCP 

Percent drop 69% 
(62-76%) 

9% 
(6-14%) 

37% 
(32-43%) 

29% 
(19-40%) 

36% 
(31-40%) 

Time to 75% 92% 
(86-97%) 

19% 
(15-24%) 

29% 
(24-34%) 

88% 
(77-94%) 

38% 
(34-43%) 

Log β-hCG Ratio 30% 
(21-40%) 

3% 
(2-6%) 

9% 
(6-12%) 

13% 
(6-23%) 

9% 
(7-13%) 
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Percent drop occasionally exhibited paradoxical protective 
associations, likely reflecting early measurement variability or 
non-monotonic β-hCG patterns in non-GTN cases. Similarly, 
the log β-hCG ratio did not add significant discriminatory value 
when time-to-decline metrics were already incorporated. 
Together, these findings position β-hCG decay metrics as 
clinically informative early prognostic markers. 
 
 
DISCUSSION 
 
This study examined the role of early β-hCG decay kinetics in 
predicting the development of post-molar GTN. Among several 
candidate metrics, the time-to-75% β-hCG decline consistently 
emerged as the most robust and clinically interpretable predictor. 
Patients who failed to achieve this decline within 25 days are 
likely to have a four-fold increased risk of GTN. This pattern 
held across subgroups, with this early, shape-sensitive threshold 
providing more actionable decision point than conventional 
FIGO definitions especially when used with other prognostic 
variables. 
 
These findings build upon previous studies underscoring the 
importance of early β-hCG decline dynamics. Much of the 
earlier literature emphasized slope-based declines (Kader et al. 
2024) or β-hCG measurements within the first three weeks post-
evacuation (Sy and Cagayan 2023; Khosravirad et al. 2017). 
Other studies highlighted that reaching <5 mIU/mL by 56 days 
lowers risk (Albright et al. 2020; Braga et al. 2015), while ratios 
and absolute levels at two to four weeks reliably predicted 
persistence (Rakprasit et al. 2023; Wolfberg et al. 2005). 
Together, these studies support the premise that early 
biochemical trajectories contain clinically meaningful signals. 
 
The biological mechanism underlying delayed β-hCG decay is 
well established. Persistent or malignant trophoblastic tissue 
continues producing β-hCG after evacuation, resulting in slower 
clearance (Braga et al. 2019). Instead of the rapid decline 
expected from physiologic involuting syncytiotrophoblasts, 
neoplastic cytotrophoblasts sustain β-hCG secretion, producing 
plateauing or secondary rises (Taylor et al. 2016). The time-to-
75% metric therefore approximates the window in which normal 
trophoblastic regression should occur, making delayed clearance 
a plausible early marker of malignant persistence. 
 
These observations align with existing FIGO and National 
Comprehensive Cancer Network (NCCN) guidelines, which 
define GTN using plateauing or rising β-hCG values across 
consecutive weekly measurements (Ngan et al. 2021; Abu-
Rustum et al. 2019). Because the time-to-75% captures kinetic 
abnormalities earlier, it offers a complementary signal while 
remaining compatible with existing follow-up schedules. 
Furthermore, the finding that failure to reach a 75% drop within 
25 days increases the risk of progression reinforces previous 
studies showing that two-week β-hCG ratios <30 predicted GTN 
(Kang et al. 2012). Translating it to clinical practice, if β-hCG 
levels do not drop by 75% within the first three to four weeks, 
clinicians may consider intensifying surveillance, ordering 
additional diagnostics, or anticipating earlier intervention. 
 
From a model development perspective, the inclusion of 
demographic (e.g., maternal age) and treatment-related variables 
(e.g., suction curettage) did not enhance prediction (Savage et al. 
2013). This aligns with reports suggesting that early biochemical 
behavior often supersedes baseline clinical characteristics in 
GTD prognosis (Ngan et al. 2018). In resource-constrained 
settings like the Philippines, which have a relatively high GTD 
burden, a shift toward β-hCG-driven predictive models may 
offer a practical and rapid approach to post-evacuation triage. 
 

The percent drop metric, although statistically significant, had 
limited ability to rule out GTN. Similarly, log-ratio thresholds 
reflected the protective effect of sharper β-hCG declines but may 
be less intuitive for bedside decision-making. These findings 
support using multiple metrics in combination to reduce the risk 
of misclassification, while maintaining alignment with standard 
practice benchmarks such as β-hCG normalization (<5 mIU/mL) 
by eight weeks (Abu-Rustum et al. 2019). 
 
The contrasting performance of the GBM and logistic models 
warrants attention. Although GBM achieved a high apparent 
AUC (0.96), it exhibited poor cross-validated calibration and 
minimal net clinical benefit, likely due to sample size limitations 
and sparse events contributing to overfitting. This emphasizes 
the importance of appropriately matching model complexity to 
dataset structure rather than suggesting inherent flaws in ML 
methods (Huber et al. 2023; Christodoulou et al. 2019). 
Traditional logistic regression retained advantages in 
interpretability and biological grounding, making it a more 
suitable option for early clinical translation (Topol 2019). 
 
Additionally, this reinforces a broader point in prediction 
modeling: discrimination alone is insufficient. Calibration, 
validation, and out-of-sample performance are essential and 
frequently overlooked in prediction model studies (Parker et al. 
2023; Van Calster et al. 2019). In this study, both regression 
models confirmed the salience of time-based and relative decay 
metrics, with the simpler model offering better calibration and 
decision-analytic utility. As a result, these metrics appear more 
practical for implementation. 
 
A key strength of this study is its multi-method analytic design. 
By combining traditional regression with ML-based approaches 
and applying ROC, calibration, and decision-curve analyses, the 
findings were triangulated. Stratified AUCs and RR estimates 
provided sensitivity analyses across relevant subgroups, while 
Youden-based thresholds accompanied by cross-validated DCA 
improved the translational value of the models. 
 
Its novelty lies in the use of flexible, trajectory-based markers 
rather than fixed β-hCG cutoffs. These metrics remain intuitive, 
actionable during early follow-up, and do not require additional 
cost. The simplicity of time-to-75% has the potential to improve 
patient–clinician communication and support shared decision-
making, especially in the context of early follow-up uncertainty. 
However, the retrospective design limits control over β-hCG 
sampling intervals, contributing to variable values and 
occasional separation issues. Shorter follow-up among GTN 
cases may introduce survivor bias or truncation effects in slope-
based metrics. The use of data from single-institution and 
inconsistent laboratory sources may also affect generalizability. 
Thresholds identified here may not extrapolate directly to other 
healthcare settings. 
 
GBM performance remained inconsistent, with limited NCB 
likely due to scaling procedures, data limitations, or sparse 
events. Although hierarchical and parsimonious modeling 
approaches, along with diagnostic checks, helped address these 
constraints, caution remains essential when interpreting outlier 
estimates, especially in stratified analyses. 
 
Based on the findings, percent drop and time-to-75% may be 
incorporated into post-evacuation protocols as preliminary 
screening tools during the first two to four weeks. For example, 
a delayed or prolonged time-to-75% (>25 days) may prompt 
early referral or intensified surveillance. Prospective validation 
in diverse clinical and assay contexts is needed to test 
generalizability. Future directions include developing point-of-
care tools, Bayesian hybrid models, and cost-effectiveness 
analyses to support implementation. 
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While ML-based models offered some insights, traditional 
logistic regression remains the most appropriate starting point 
for clinical exploration. Further improvements may involve 
adding complementary diagnostic markers and standardizing β-
hCG assays across laboratories. Low-cost mobile monitoring 
tools also warrant exploration, particularly in settings with 
constrained access to laboratory and diagnostics. 
 
Finally, this study highlights the broader gap in the Philippines 
regarding locally validated, dynamic prediction tools. Given the 
rarity of GTD, establishing a harmonized GTD registry would 
enable larger-scale evaluation of β-hCG trajectory metrics and 
support more timely detection and management, particularly in 
resource-limited environments. 
 
 
CONCLUSION 
 
This study offers a paradigm shift in GTN surveillance, moving 
beyond fixed biomarker thresholds to maximize repeated 
measurements using flexible, trajectory-based β-hCG decay 
metrics. These metrics exhibited early, reliable, and clinically 
meaningful signals of malignant progression. Machine learning 
offered the potential of non-linear models yet traditional 
regression methods showed superior calibration and clinical 
utility, thus, reinforcing the importance of model interpretability. 
 
Time-to-75% decline offered actionable insights within four 
weeks after molar evacuation. The use of these clinically 
interpretable measures empowers both clinicians and patients 
with timely, personalized insights which could prompt 
intensified surveillance or earlier intervention, compared with 
current practice, which delays action until fixed cutoffs are met, 
often several weeks later. 
 
Furthermore, these simple, intuitive decay thresholds offer a 
feasible framework for tailoring GTN follow-up, especially in 
resource-constrained settings where follow-up is not always 
optimal. However, external validation across diverse 
populations, refinement of β-hCG decay patterns, and improved 
disease registries will be needed to ensure that these early 
detection strategies translate into improved outcomes for GTD 
patients. 
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SUPPLEMENTAL DATA 
 
Appendix A: Supplementary Tables 
 

 
 
 

Table 1: Distribution of Serum β-hCG across Follow-up Visits 
Follow-up  Median (IQR)  Obs.    Follow-up  Median (IQR)  Obs.  

1  1,250 (300, 4,520)  413    12  1.20 (0.10, 1.21)  108  

2  131 (23.04, 508.24)  412    13  1.20 (0.10, 1.21)  57  

3  23.10 (4.10, 134.60)  402    14  1.20 (0.69, 1.20)  33  

4  5.25 (1.66, 38.29)  372    15  1.20 (0.52, 1.20)  20  

5  2.05 (1.00, 8.60)  346    16  0.10 (0.10, 1.10)  12  

6  1.20 (0.11, 3.40)  308    17  0.14 (0.10, 1.10)  8  

7  1.20 (0.15, 2.00)  267    18  0.10 (0.10, 0.10)  6  

8  1.20 (0.10, 1.21)  238    19  0.10 (0.10, 0.10)  5  

9  1.20 (0.10, 1.21)  217    20  0.10 (0.10, 0.10)  3  

10  1.20 (0.10, 1.21)  195    21  0.10  1  

11  1.20 (0.10, 1.21)  155    22  0.10  1  

Table 2: Crude Association of Flexible Decay Metrics with GTN 
Metrics  OR (95% CI)  p-value  AUC (95% CI)  

Percent drop  0.94 (0.91 – 0.97)  <0.01*  0.94 (0.92 – 0.97)  

Log β-hCG Ratio  0.77 (0.68 – 0.86)  <0.01*  0.68 (0.62 – 0.74)  

Drop rate  
Time-to-50%  

  
0.99 (0.97 – <1.00)  

  
0.05*  

  
0.52 (0.45 – 0.58)  

Time-to-75%  0.99 (0.97 – <1.00)  0.03*  0.54 (0.47 – 0.61)  
Time-to-90%  0.98 (0.96 – 0.99)  0.01*  0.57 (0.51 – 0.64)  

Log decline rate  4,397 (2.86 – 11,075,723) 0.03*  0.57 (0.48 – 0.66)  

Time-to-threshold  
Time to 100 mIU/mL  

  
1.00 (0.99 – 1.01)  

  
0.39  

  
0.64 (0.50 – 0.77)  

Time to 10 mIU/mL  1.00 (0.98 – 1.01)  0.80  0.42 (0.33 – 0.51)  
Time to 5 mIU/mL  0.99 (0.97 – 1.01)  0.56  0.49 (0.38 – 0.61)  

Early doubling  7.28 (2.54 – 22.40)  <0.01*  0.55 (0.51 – 0.59)  

Parametric slope  0.62 (0.07 – 5.18)  0.66  0.52 (0.46 – 0.59)  

Segmental slopes  
T1 (≤2 follow-ups)  

  
117.21 (17.20 – 888.52) 

  
<0.01*  

  
0.68 (0.62 – 0.75)  

T2 (≤4 follow-ups)  22,4180.93 (1,979.05 – 42,828,994) <0.01*  0.76 (0.68 – 0.85)  
T3 (5th follow-up)  915.77 (0.75 – 10,538,688) 0.07  0.76 (0.61 – 0.91  

Table 3: Extended Model 
Predictors OR 95% CI p-value 

Segmental slopes    
T1 (≤2 follow-ups)  2.09 0.13 – 25.90 0.61 
T2 (≤4 follow-ups)  1.74 0.21 – 28.90 0.68 
T3 (5th follow-up)  0.26 0.06 – 0.66   0.03* 

Percent drop  0.99 0.87 – 0.99 0.69 
Time-to-75%  0.77 0.44 – 1.03 0.35 
Time-to-10%  1.00 0.94 – 1.05 0.99 
Log β-hCG Ratio  1.04 0.32 – 3.33 0.95 

Table 4: Interaction Model 
Predictors OR 95% CI p-value 

Segmental slopes    
T1 (≤2 follow-ups)  2.69 0.29 – 28.30 0.44 
T2 (≤4 follow-ups)  0.81  0.44 – 2.43  0.56  
T3 (5th follow-up)  0.22  0.04 – 1.12  0.06  

Slope T3 * β-hCG 0.01  <0.01 – 0.43    0.02* 
Baseline β-hCG 0.07  <0.01 – 0.96  0.32  
Time-to-75% 0.96  0.83 – 1.04  0.53  
Time-to-10% 1.00  0.96 – 1.02  0.82  
Log β-hCG Ratio  1.17  0.42 – 2.94  0.74  
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Table 5: Summary of Model Comparison Metrics 
Model n AIC BIC LR x2 p-value AUC VIF 

Core 400 313.43 329.39 46.3 <0.01* 0.75 (0.68 – 0.81) All < 1.20 
Extended  286 31.03 60.27 27.1 <0.01* 0.91 (0.74 – 1.00) Max ≈ 1.59 
Interaction  286 43.04 75.94 17.1 <0.01* 0.84 (0.54 – 1.00) Max ≈ 4.76 
Adjusted 400 309.19 337.13 56.5 <0.01* 0.77 (0.70 – 0.83) All < 1.40 

Table 6: GBM Feature Importance Metrics 
Feature Gain Cover Frequency 

Percent drop 0.723 0.475 0.315 
Time-to-75% 0.142 0.174 0.172 
Log β-hCG ratio 0.066 0.182 0.295 
Maternal age 0.061 0.161 0.207 
Mode of evacuation 0.006 0.006 0.009 
Chemoprophylaxis 0.001 0.001 0.002 

Table 7: Stratified Discrimination Metrics 
Subgroup AUC 95% CI 

Histology   
Partial mole 1.00 - 
Complete mole 0.75 0.68 – 0.81 

Mode of evacuation   
Suction curettage 0.74 0.67 – 0.82 
Surgical evacuation 0.90 0.70 – 1.00 

Chemoprophylaxis   
Not given 0.97 0.95 – 1.00 
Given 0.74 0.67 – 0.82 

Table 8: Summary Measures of Early β-hCG Decay Metrics 
Metrics  Median  Range  Youden’s  

Percent drop 99.99 -12,720.51 to 100 99.97 
Time-to-75% 13.00 2 to +∞ 25.50 
Log β-hCG ratio 4.50 0.03 to 15.61 4.12 

Table 9: Stratified Risk Estimation Models of Early Decay Metrics and GTN 
Subgroup  Predictor  Robust RR (95% CI)  p-value  

Overall Low Percent Drop  0.04 (0.02 – 0.08)  <0.01*  
 Slow Time to 75%  4.02 (2.20 – 7.36)  <0.01*  
 Low Log β-hCG Ratio  0.96 (0.72 – 1.27)  0.77  
Histology    

Partial mole Low Percent Drop 1.27-9 0.009 
 Slow Time to 75% 3.00 (0.39 – 22.87) 0.29 
 Low Log β-hCG Ratio 1.00 (0.23 – 4.31) 0.99 

Complete mole Low Percent Drop 0.05 (0.02 – 0.09) <0.01* 
 Slow Time to 75% 4.06 (2.14 – 7.69) <0.01* 
 Low Log β-hCG Ratio 0.92 (0.69 – 1.24) 0.59 

Mode of evacuation    
Suction curettage Low Percent Drop 0.05 (0.03 – 0.10) <0.01* 

 Slow Time to 75% 2.98 (1.62 – 5.50) <0.01* 
 Low Log β-hCG Ratio 1.02 (0.75 – 1.38) 0.92 

Surgical approach Low Percent Drop 1.19-10 (8.59-11 – 3.24-10) <0.01* 
 Slow Time to 75% 11.94 (1.84 – 77.40) 0.01* 
 Low Log β-hCG Ratio 0.74 (0.42 – 1.30) 0.30 

Chemoprophylaxis    
Not given Low Percent Drop 2.36-10 (1.71-10 – 3.24-10) <0.01* 

 Slow Time to 75% 2.17 (0.94 – 5.01)  0.07 
 Low Log β-hCG Ratio 1.22 (0.95 – 1.57)  0.12 

Given Low Percent Drop 0.05 (0.03 – 0.10) <0.01* 
 Slow Time to 75% 5.02 (2.29 – 11.00) <0.01* 
 Low Log β-hCG Ratio 0.88 (0.60 – 1.30) 0.53 
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Appendix B: Supplementary Figures 
 

 

 
Figure 1: Interaction Plot between Segmental Slopes and Baseline β-hCG 
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Figure 2: ROC Plot of Logistic and GBM Models in Predicting GTN
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Figure 3: Calibration Plot of the Adjusted Logistic Model

 
 


